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regions associated with resistance to cotyledon, pod wall/
seed coat and pod wall resistance. Three major QTls, 
located on linkage groups lG2, lG4 and lG5 were found 
for cotyledon resistance explaining approximately 80 % of 
the phenotypic variation. Two major QTls were found for 
pod wall/seed coat resistance on lG2 and lG5 explaining 
approximately 70 % of the phenotypic variation. Co-line-
arity of QTls for cotyledon and pod wall/seed coat resist-
ance suggested that the mechanism of resistance for these 
two traits might act through the same pathways. Only one 
QTl was found for pod wall resistance on lG7 explaining 
approximately 9 % of the phenotypic variation. This is the 
first report on the development of QTl markers to probe 
Pisum germplasm for pea weevil resistance genes. These 
flanking markers will be useful in accelerating the process 
of screening when breeding for pea weevil resistance.

Introduction

Pea weevil (Bruchus pisorum) is one of the most intracta-
ble pest problems of cultivated field pea in most parts of the 
world including north and South America (Brindley 1933; 
Pesho et al. 1977; Clement et al. 2009), europe (Marzo 
et al. 1997; Girsch et al. 1999), the Indian sub-continent 
(Pajni and Sood 1975), and Australia (Hardie and Clement 
2001; newman 1932; Birks 1965). Field pea producers rely 
mainly on well-timed contact insecticide spray applica-
tions to control pea weevil adults in fields before females 
lay eggs on pods (Horne and Bailey 1991; O’Keeffe 1992; 
Clement et al. 2000). Australian registered insecticides pro-
vide maximum protection for 7 days in high pest pressure 
situations (Michael et al. 1993). Therefore, timing of chem-
ical applications to coincide with female oviposition is dif-
ficult to achieve and several insecticide applications may be 
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required to control a prolonged invasion of pea weevils if 
weevil colonization continues for 2–4 weeks in a pea field 
(Michael et al. 1990). The development and utilization of 
pea weevil-resistant cultivars with pod and/or seed resist-
ance would reduce pest control costs and provide an envi-
ronmentally safe option for the integrated management of 
this serious pest (Aryamanesh et al. 2012; Clement et al. 
2009).

lack of a reliable pea weevil resistance source in Pisum 
sativum accessions led to the exploration and identification 
of resistant sources in the secondary gene pool of Pisum 
(Pesho et al. 1977; Hardie 1990, 1995; Clement et al. 1994, 
2002; Hardie and Clement 2001) which resulted in the dis-
covery of pod and seed resistance in Pisum fulvum acces-
sions (Hardie et al. 1995, 1999; Clement et al. 2002). P. ful-
vum accession ATC113 (PI 595933) has been successfully 
crossed with P. sativum accession Pennant and produced 
interspecific progenies with resistant lines (Byrne 2005; 
Byrne et al. 2008; Hardie 1992). The introgression of pea 
weevil resistance into cultivated field pea was further dem-
onstrated in advanced backcross lines of the original popu-
lation (Aryamanesh et al. 2012). Therefore, an interspecific 
hybridization approach has potential for developing pea 
cultivars with resistance to pea weevil.

Currently, glasshouse bioassay is the most robust tech-
nique for phenotyping pea weevil resistance. Despite 
development of screening methods including glasshouse 
bioassay (Hardie and Clement 2001) and caesium chlo-
ride density separation method (Aryamanesh et al. 2012), 
no reliable DnA-based molecular marker is available for 
pea weevil resistance. The objectives of this study were 
to create an interspecific mapping population segregating 
for pea weevil resistance and to identify the regions in the 
pea genome associated with resistance to pea weevil using 
quantitative trait locus (QTl) mapping. To our knowledge, 
this is the first such report to discover novel QTls for pea 
weevil resistance in the field pea genome using microsatel-
lite markers.

Materials and methods

Plant materials

Pisum sativum cv. Pennant was supplied by The Waite 
Agricultural research Institute, South Australia. P. fulvum 
accession ATC113 (PI 595933) was obtained from the Aus-
tralian Temperate Field Crops Collection, Horsham, Victo-
ria (ATFC).

The pea weevil susceptible P. sativum cv. Pennant was 
crossed with wild pea weevil-resistant P. fulvum acces-
sion ATC113 in a glasshouse. An interspesific population 
consisting of 270 F2 individuals was produced (Byrne 

2005; Byrne et al. 2008; Hardie 1992). All F2 plants were 
assessed for pea weevil resistance; however, only 188 ran-
domly selected F2 individuals and two parental lines were 
used for QTl mapping.

Pea weevil resistance bioassay

All 270 F2 plants and parental lines were evaluated for 
seed and pod resistance using the best available screening 
method, the in situ pod bioassay developed by Hardie and 
Clement (2001) and Clement et al. (2002) and as described 
by Byrne et al. (2008). Modifications are described by 
Aryamanesh et al. (2012) as follows: 20–25 mature pea 
weevils collected from Medina Field Station from both 
genders were kept in 1.5 l clear plastic rearing cages 
(200 × 100 × 75 mm) supplied with organic honey (Pure 
and natural Honey, Wescobee ltd), fresh drinking water, 
insecticide-free commercial bee pollen (Bee Pack Bee Pol-
len, Allwest Apiaries) and fresh field pea pods. The cages 
were maintained in a 25 ± 2 °C growth cabinet with a rela-
tive humidity of 60 ± 10 % and 12 h photoperiod. Fresh 
field pea pods were added to cages after 7 days as egg-lay-
ing substrates for the ovipositing females to harvest eggs. 
Pods were replaced regularly and used as a source of pea 
weevil eggs. Pennant or commercially grown pesticide-free 
pea pods were used as the egg-laying substrate for the dura-
tion of the in situ glasshouse experiments. Viable mature 
eggs were examined with a binocular microscope and used 
for inoculation of field pea pods (Hardie and Clement 2001).

F2 population and parental lines were grown in a glass-
house. Pods of the F2 population and parental lines still 
attached to plants were inoculated with pea weevil eggs 
using a water-moistened fine-tipped brush. All eggs were 
examined under binoculear microscope for viability (dark-
colored head capsule visible through the egg chorion). Two 
eggs were placed adjacent to a developing seed on the sur-
face of the pod, with an average of ten seeds (on at least 
three different pods) per plant inoculated. Pea weevil eggs 
were securely stuck to the pod and egg hatching and bur-
rowing into the pods were monitored throughout the experi-
ment. Pods were harvested after the plants senesced (within 
1.5–2 months) and stored at room temperature (18–25 °C) 
for approximately 3 months to allow insect development to 
be completed to the adult stage.

F2 pods and F2-derived F3 seeds were then examined for 
larval chewing entrance and exit holes. Three levels of pea 
weevil resistance measurements were used in this study 
for QTl mapping as described by Simmonds et al. (1989) 
and adapted by Byrne et al. (2008). These included coty-
ledon (seed) resistance, pod wall/seed coat resistance and 
pod wall resistance. Cotyledon (seed) resistance was cal-
culated as the percentage of seeds with no exit holes but 
with the seed coat entry puncture holes. Pod wall/seed coat 
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resistance was calculated as the percentage of the number 
of seed coat puncture holes versus the number of pod wall 
puncture holes. Pod wall resistance was measured as the 
percentage of the number of larval puncture holes versus 
the number of pea weevil eggs placed on the pod. Punc-
ture hole(s) were always given a numerical value of either 0 
(absence) or 1 (presence) regardless of the number of entry 
holes, as only one pea weevil emerges from a single seed as 
described by Byrne et al. (2008).

Molecular mapping

Young leaves were collected from parental lines and F2 
plants. DnA extraction was conducted using nucleon Phy-
topure Plant DnA extraction Kit (Ge Healthcare) with 
0.1 mg of fresh leaf material according to the manufac-
turer’s instructions. Microsatellite primers developed by 
Agrogene Inc. (Moissy-Cramayel, France) and Burstin et al. 
(2001) were synthesized with generic non-complementary 
nucleotide sequences at their 5′-end (forward primer tag 5′ 
ACGACGTTGTAAAA 3′and reverse primer tag 5′ CAT-
TAAGTTCCCATTA 3′) as described by Hayden et al. 
(2008). locus-specific primers were prepared by mix-
ing equimolar amounts of appropriate forward and reverse 
primer in ddH2O. Two generic tag primers (dye-labeled tagF 
5′ ACGACGTTGTAAAA 3′ and unlabeled tagr 5′ CAT-
TAAGTTCCCATTA 3′) were also synthesized which had 
the same sequence as the non-complementary nucleotide in 
locus-specific primers. The tagF primer was fluorescently 
labeled at its 5′-end with VIC, FAM, neD or PeT dyes 
(Applied Biosystems, Warrington, UK). The amplification of 
field pea SSr markers was performed using multiplex-ready 
PCr as described by Hayden et al. (2008). SSr scoring 
was performed using Gene Mapper v3.7 software (Applied 
Biosystems). Dominant SSr markers that only amplified 
in the maternal parent were suffixed by ‘nP’ (null paternal) 
and the paternal dominant markers were suffixed by ‘nM’ 
(null maternal) as described previously by Aryamanesh et al. 
(2010). Markers that detected an additional locus were dis-
tinguished using the molecular weight of the field pea parent 
allele in parentheses at the end of the locus name.

Statistical analyses and genetic mapping

Chi square (χ2) analyses were performed to determine seg-
regation of SSr markers in the F2 population for goodness 
of fit to the expected 1:2:1 and 3:1 ratios. Genetic linkage 
mapping was conducted using MapManager QTX version 
0.30 (Manly et al. 2001) using the Kosambi mapping func-
tion with a minimum threshold lOD (logarithm of odds) 
score of 3 and a maximum recombination of 25 %. link-
age groups were assigned based on some common mark-
ers with loridon et al. (2005). QTl mapping was carried 

out using MultiQTl software, version 2.5 (http://www.mu
ltiqtl.com), with parameters previously described by Ary-
amanesh et al. (2010) as follow. Three hypotheses (H0, H1 
and H2) were tested for QTl detection including; (H0), the 
QTl has no effect on a trait; (H1), a single QTl on a chro-
mosome has an effect on a trait; and (H2), two linked QTls 
on a chromosome have an effect on a trait. Two sub-models 
for H1 including equal or unequal variance, and four sub-
models for H2 including equal or unequal variance, with 
or without epistasis were tested by running 3,000 permu-
tation tests. Where the models were significantly differ-
ent (P < 0.05), the model with the highest lOD score was 
selected for QTl detection. Whenever there was no sig-
nificant difference between models (P > 0.05), the simplest 
model with equal variance and no epistasis (in the case of 
two linked QTl) were selected. 5,000 bootstrap repeats 
were run for the selected model to estimate the parameters 
and their standard deviations.

Results

Pea weevil responses of parental lines and the F2 
population

Pisum sativum accession ATC113 showed 100 % cotyledon 
resistance with no pea weevil seed emergence or exit holes, 
while the cultivated parental line Pennant had a mean seed 
emergence of 91.3 %. The distribution of the F2 population 
was continuous but skewed towards the susceptible parent 
Pennant with an average of 79.9 % susceptibility (Fig. 1a). 
Only five F2 plants showed 100 % cotyledon resistance 
comparable to wild accession ATC113.

For pod wall/seed coat susceptibility, there was no sig-
nificant difference between ATC113 and Pennant with 97.4 
and 97.9 %, respectively (P > 0.05). The distribution of the 
F2 population was continuous and some individuals with 
strong pod wall/seed coat resistance were observed in the 
F2 population ranging from 0.0 to 100 % (Fig. 1b).

Pod wall susceptibility of parental lines was signifi-
cantly different—ATC113 with a mean of 62.4 % (ranging 
from 86.2 to 100 %) compared to a mean of 74.3 % (rang-
ing from 90.2 to 100 %) for the susceptible parent Pennant 
(P < 0.01). Transgressive segregation was observed for pod 
wall susceptibility in the F2 population ranging from 0.0 to 
100 % (Fig. 1c). Only four F2 lines had less than 20 % pod 
wall susceptibility, while most of the lines were in the same 
category as parental lines.

Correlations of traits

Pod wall/seed coat susceptibility and cotyledon suscep-
tibility were positively correlated (r = 0.24, P < 0.001). 

http://www.multiqtl.com
http://www.multiqtl.com
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There was a significant negative correlation between pod 
wall susceptibility and pod wall/seed coat susceptibility 
(r = −0.20, P < 0.01). Correlation between pod wall sus-
ceptibility and cotyledon susceptibility was, also, signifi-
cant (r = 0.15, P < 0.05). However, these correlations were 
at a very low level with best correlation accounting for less 
than 6 % of the variation (r = 0.24).

Genetic linkage map of field pea

The linkage map comprised 155 microsatellite markers in 
eight linkage groups covering 2,685.8 cM of the field pea 
genome (Fig. 2). 49 markers remained unlinked. The aver-
age spacing between microsatellite markers was 17.3 cM.

The observed and expected marker allele segregation 
ratios were compared using Chi square tests (P < 0.05). Of 

the 155 markers mapped in the linkage groups, 77 (49 %) 
had segregation ratios that significantly deviated from the 
expected 1:2:1 ratio for co-dominant markers and the 3:1 
ratio for dominant markers in the F2 population. Of the 77 
distorted markers, 19 were distorted towards the P. fulvum 
accession ATC113 parent located on lG1, lG6 and lG8 
and the rest (58 markers) were distorted towards P. sativum 
parent distributed mainly on lG7.

Mapping cotyledon resistance

Three major QTl regions (on lG2, lG4 and lG5) and 
five minor QTl regions (on lG7, lG3, lG4 and lG5) 
significantly associated with pea weevil cotyledon resist-
ance were detected. A major single QTl (COr2) associ-
ated with pea weevil cotyledon resistance was detected 
on lG2 (lOD = 12.1, P = 0.0297) with flanking mark-
ers AA179 (4.9 cM) and AA189 (14.2 cM) explaining 
42.1 % of the phenotypic variation in the population 
(Table 1). The second major QTl (COr4b) was found on 
lG4 explaining 20.9 % of the phenotypic variation with 
flanking markers AB28 and AA297 (Table 2). Two linked 
QTls, COr5a and COr5b were found on lG5 explain-
ing 16.7 and 7.7 % of the phenotypic variation, respec-
tively. Another four minor QTls were detected for coty-
ledon resistance on lG7 (COr7), lG3 (COr3a, COr3b) 
and lG4 (COr4a) explaining 1, 3.7, 1.2 and 3.2 % of 
the phenotypic variation, respectively. In all, the QTls 
explained 96.5 % of the phenotypic variation for pea wee-
vil cotyledon resistance. Dominance played an important 
role in pea weevil cotyledon resistance, in particular, for 
the QTl located on lG7 and lG2 (COr7 and COr2) 
(Table 1). epistatic effects were also important in the con-
trol of cotyledon resistance to pea weevil in the mapping 
population.

Mapping pod wall/seed coat resistance

In the case of pod wall/seed coat resistance, two major 
QTls were found on lG2 (lOD = 9.4, P = 0.045) and 
lG5 (lOD = 126.9, P = 0.002). A single QTl on lG2 
(SCr2) explained 39.0 % of phenotypic variation with 
flanking markers AA179 (2.6 cM) and AA189 (16.6 cM) 
(Table 1). The linked QTl on lG5–SCr5a and SCr5b–
explained 21.4 and 4.2 % of phenotypic variation, respec-
tively (Table 2). SCr5a was located in interval 3 with 
flanking markers AD280 and AA399 while SCr5b was 
located in interval 8 with flanking markers AD160 and A5. 
Two other minor linked QTls, SCr7a and SCr7b were 
detected on lG7 in intervals 51 and 60 explaining only 2.1 
and 3.1 % of phenotypic variation (Table 2). Pod wall/seed 
coat resistance QTls explained a total of 70.7 % of pheno-
typic variation. Both additive/dominant and epistatic effects 

Fig. 1  Distribution of F2 population in response to pea weevil in a 
cotyledon, b pod wall/seed coat and c pod wall levels
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were important in the control of pod wall/seed coat resist-
ance to pea weevil.

Mapping pod wall resistance

A single QTl was detected for pod wall resistance on lG7 
(lOD = 6.4, P = 0.0443). This QTl (POD7) explained 
only 8.8 % of the phenotypic variation with flanking mark-
ers SC47359 and AA206 with 8.7 and 10.2 cM apart from 
the QTl region, respectively.

Discussion

In this study, we identified QTls for pea weevil resist-
ance that included cotyledon resistance, pod wall/seed coat 
resistance and pod wall resistance. This is the first map-
ping analysis for pea weevil resistance in field pea. We also 

provided evidence that cotyledon resistance and pod wall/
seed coat resistance are controlled by three and two major 
QTls, respectively; a few other QTls had minor effects 
on the traits. There was a positive correlation between pod 
wall/seed coat resistance and cotyledon resistance albeit at 
a low level.

The polygenic inheritance for cotyledon resistance found 
in this study was further confirmed by three major QTls 
for cotyledon resistance located on lG2, lG4 and lG5. 
These results agree with the work of Byrne et al. (2008) 
who reported three major recessive alleles controlling seed 
resistance. The QTl located on lG2, COr2, had a major 
effect on the trait, accounting for 42.1 % of phenotypic var-
iation. QTls COr4b and COr5a located on lG4 and lG5 
explained 20.9 and 16.7 % of the phenotypic variation, 
respectively. All three major QTls for cotyledon resistance 
(COr2, COr4b and COr5a) accounted for around 80 % of 
phenotypic variation. These results suggest that we retained 

Fig. 2  The genetic linkage map of Pisum based on the interspecific 
F2 population, derived from a cross between Pisum sativum (cv. Pen-
nant) and Pisum fulvum (accession ATC113) using microsatellite 

markers. The locations of QTls are shown in front of the markers for 
cotyledon resistance (COr), pod wall/seed coat resistance (SCr) and 
pod wall resistance (POD)
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all three major genes from wild P. fulvum in the F2 popu-
lation. Polygenic inheritance of other Bruchid species has 
been reported in other legume species such as black gram 
(Souframanien et al. 2010), cowpea (Adjadi et al. 1985; 
rusoke and Fatunla 1987), common bean (Kornegay and 
Cardona 1991) and mungbean weevil (Mei et al. 2009). 
The proportion of explained phenotypic variation explained 
by cotyledon resistance QTls in our study was higher 
than other reported QTls on black gram with around 
67 % (Souframanien et al. 2010), on maize with 28–47 % 
(Garcia-lara et al. 2009, 2010), on mungbean with 55 % 
(Mei et al. 2009). In the estimation of genetic effects, the 
observed decrease in variance explained by QTls may be 
attributed to two confounded factors including environmen-
tal and genotypic sampling (Utz et al. 2000). As observed 
in soybean, QTl detection could be hampered in the pop-
ulation due to isolated regions of abnormal segregation 
(rector et al. 2000).

lG2 seems to play an important role in pea weevil 
resistance since the major QTl for pod wall/seed coat 
resistance (SCr2) was also located in the same region 
explaining 21.4 % of the variation. This linkage between 
cotyledon resistance and pod wall/seed coat resistance 
was also reflected in the high correlation of phenotypic 
data for these two traits. The second major QTl for pod 
wall/seed coat resistance (SCr5a) was located on lG5 
explaining 21.4 % of the phenotypic variation which was 
in close proximity to the QTl for cotyledon resistance, 
COr5a. These data suggest that pod wall/seed coat resist-
ance and cotyledon resistance may employ similar mecha-
nisms to resist pea weevil. All QTls for pod wall/seed coat 

resistance explained around 70 % of phenotypic variation 
suggesting considerable environmental effects. epistasis 
effect was also important for both pod wall/seed coat and 
cotyledon resistance as observed by Byrne et al. (2008).

Pod wall resistance was mostly influenced by environ-
mental effects as only a single QTl (POD1) with a rela-
tively minor effect was found (8.8 %). POD1 was flanked 
by an AFlP-based marker, SC47359 which was previously 
developed in this population using a multivariate statisti-
cal approach that was applied to bulked segregants (Byrne 
2005; Byrne et al. 2002). A mechanism for pod resistance 
in peas appears to be supported by the neoplastic pod gene 
(Np); pea lines with this gene form callus in response to 
the presence of pea weevil eggs on pods that reduces lar-
val entry into the pod (Hardie 1990; Berdnikov et al. 1992; 
Doss et al. 2000). Doss et al. (2000) reported that lines 
with the Np gene had a lower rate of weevil-infested seed 
(62.2 %) compared to that in a susceptible line (85.4 %) 
in a field trial. Although this gene was effective in reduc-
ing the infestation ratio by around 23 %, breeders are not 
certain about the value of the Np trait in breeding weevil-
resistant cultivars (Clement et al. 2009).

For the first time, we constructed a linkage map for Pisum 
using an interspesific population derived from a cross between 
cultivated field pea and P. fulvum for the genetic study of pea 
weevil resistance. The total coverage of the linkage map gen-
erated in this study was 2,232.4 cM, which is considerably 
greater than some of the previously reported maps for field 
pea, which range from 450 to 2,416 cM (McCallum et al. 
1997; laucou et al. 1998; von Stackelberg et al. 2003; Tar’an 
et al. 2003, 2004; loridon et al. 2005; Aubert et al. 2006; 

Table 1  Detection of QTls for pea weevil resistance in the interspecific F2 mapping population (Pisum sativum × Pisum fulvum)

a linkage group and interval within lG associated with the quantitative trait, b probability values from 3,000 permutation analyses testing the 
presence of a QTl, c maximum lOD value for the given interval, d position (cM) of maximum lOD value within the interval measured from 
the first marker in the linkage group (0 cM), e proportion of explained phenotypic variation by the putative QTl, c–e estimated by 5,000 boot-
strap tests. estimates obtained with MultiQTl software and corrected according to distance obtained from MapManager. Standard deviations 
(SD) and allele sizes are shown in parentheses

QTl characteristics Cotyledon resistance Cotyledon resistance Pod wall/seed coat resistance Pod wall resistance

QTl name COr2 COr7 SCr2 POD7

lG (interval)a 2 (2) 7a (3) 2 (2) 7b (48)

Pb 0.0297 0.0117 0.0453 0.0443

lODc 12.1(4.1) 11.8(3.8) 9.4 (6.8) 6.4 (2.6)

Positiond 31.0 (26.4) 151.4 (55.2) 28.2 (35.1) 881.3 (35.4)

PeVe 0.718 (0.123) 0.747 (0.093) 0.547 (0.208) 0.625 (0.141)

PeV (additive) 0.379 (0.142) 0.012(0.058) 0.434 (0.173) 0.145 (0.161)

response mean 58.7 (8.489) 89.2 (4.469) 88.01 (10.97) 63.24 (12.02)

effect(additive) 42.11 (21.12) −1.0 (8.413) 39.91 (26.24) 8.857 (23.6)

effect(dominant) 30.12 (10.03) −45.5 (14.46) 8.451 (11.75) −15.94 (30.25)

Flanking markers AA179 (304 bp)  
AA189 (232 bp)

AA99 (210 bp)  
AD237 (160 bp)

AA179 (304 bp)  
AA189 (232 bp)

SC47359 (335 bp) 
AA206 (220 bp)

Donor parent ATC113 Pennant ATC113 ATC113
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Ubayasena et al. 2010, 2011). The average distance between 
markers in the genetic linkage map described in this study 
was 14.4 cM which is relatively greater than the previously 
reported average distances in intraspecific populations rang-
ing from 2 to 12 cM. The relatively high linkage map cov-
erage and frequency of polymorphic SSr markers observed 
in this interspecific population may suggest a diverse genetic 
relationship of the parental lines.

Distortion of markers was relatively high (49 %) in 
this study. This phenomenon has been reported to a lesser 
extent in other intraspecific populations of Pisum fulvum 
(Barilli et al. 2010; De Martino et al. 2000) and interspe-
cific populations in the Cicer genome (Aryamanesh et al. 
2010; Collard et al. 2003; Flandez-Galves et al. 2003; Teke-
oglu et al. 2002). The high number of distorted markers in 
this interspecific field pea population might be attributed to 
the higher genetic distance/diversity of cultivated pea with 
Pisum fulvum than in chickpea interspecific populations.

Current assays to screen pea weevil resistance includ-
ing glasshouse bioassay (Hardie and Clement 2001) and 
caesium chloride density separation method (Aryamanesh 
et al. 2012) are laborious and time consuming. These meth-
ods have limited potential for application in breeding pro-
grams. For the first time, we report the development of 
mapped QTl markers to probe Pisum germplasm for pea 
weevil resistance genes in breeding programs. These flank-
ing markers could accelerate the process of screening and 
breeding for pea weevil resistance.
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